Abstract
High-temperature dilatometric studies on (Pb1−xCax)TiO3 (x = 0.35, 0.35, 0.40, 0.45) ferroelectric ceramics reveal negative thermal expansion for x ≤ 0.40. The negative thermal expansion coefficient for x = 0.30, as obtained by dilatometry and powder x-ray diffraction, were found to be −8.541 × 10−6 K−1 and −11 × 10−6 K−1, respectively, which are comparable to those of other well-known negative thermal expansion materials like ZrW2O8, NaZr2(PO4)3. Results of temperature-dependent x-ray diffraction studies are also presented to show that the large negative thermal expansion behavior for x = 0.30 persists in a very wide range of temperatures, 70–570 K. Ca2+ substitution reduces the value of the negative thermal expansion coefficient of pure PbTiO3 crystal, but it enables the preparation of strong sintered ceramic bodies. The negative thermal expansion behavior is shown to disappear above the ferroelectric Curie point and is restricted to only the tetragonal compositions of (Pb1−xCax)TiO3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.