Abstract

Three-dimensional unsteady laminar boundary layer near the planes of symmetry of sharp cones at angles of attack subject to large rates of injection is obtained numerically by using an implicit finite difference scheme in combination with the quasi-linearization technique. Several model gases are considered with Mach numbers, wall-to-total-enthalpy ratios, and cross-flow parameters spanning the ranges of main engineering interest. A detailed study has been made of the solutions in the symmetry plane, in order to increase the understanding of the problem. Various cases are considered, when the free-stream velocity and the surface mass transfer (injection) vary arbitrarily with time. The effects of viscous dissipation and the cross-flow parameter have also been discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.