Abstract

The single element GCH4/GOx rocket combustion chamber developed at the Technische Universitat Munchen has been computed using Large Eddy Simulation. The aim of this work is to analyze the flow and combustion features at high pressure, with a particular focus on the prediction of wall heat flux, a key point for the development of reusable engines. The impact of the flow and flame, as well as of the model used, on thermal loads is investigated. Longitudinal distribution of wall heat flux, as well as chamber pressure, have been plotted against experimental data, showing a good agreement. The link between the heat released by the flame, the heat losses and the chamber pressure has been explained by performing an energetic balance of the combustion chamber. A thermally chained numerical simulation of the combustor structure has been used to validate the hypothesis used in the LES.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.