Abstract

A computational fluid dynamics model is presented that allows for the investigation of the ash deposition and provides an economical approach for studying design changes in new boilers and retrofit options for existing units. This study proposes a detailed description of ash deposition integrating three separate particle-sticking criteria: melt fraction, viscosity, and energy conservation upon collision. Also, a detailed model for predicting the thermal properties of existing deposit layers (thermal conductivity and emissivity) is implemented into a one-dimensional wall heat-transfer model. The coupled ash-deposition and wall heat-transfer model is implemented into a large-eddy simulation (LES) framework to predict the heat-flux profile, deposition rates, slagging and fouling for industrial boilers. The results of this approach are validated with experimental data from the University of Utah’s 100 kW down-fired, oxy-fuel combustion (OFC) furnace. Two OFC cases with different geometries are studied for their coal combustion and dynamic ash-deposit growth in this large-scale laboratory furnace. Comparisons of the deposition rates and gas temperature agree within 4.82% and 17.58%, respectively, of the measured data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.