Abstract

Ethanol is identified as an interesting alternative fuel. In this regards, the predictive capability of combustion Large Eddy Simulation approach coupled to Lagrangian droplet dynamic model to retrieve the turbulent droplet dispersion, droplet size distribution, spray evolution and combustion properties is investigated in this paper for an ethanol spray flame. Following the Eulerian-Lagrangian approach with a fully two way coupling, the Favre-filtered low Mach number Navier-Stokes equations are solved on structured grids with dynamic sub-grid scale models to describe the turbulent carrier gas phase. Droplets are injected in polydisperse manner and generated in time dependent boundary conditions. They evaporate to form an air-fuel mixture that yields spray flame. Part of the ethanol droplets evaporates within the prevaporization area before reaching the combustion zone, making the flame to burn in a partially premixed regime. The chemistry is described by a tabulated detailed chemistry based on the flamelet generated manifold approach. The fuel, ethanol, is modeled by a detailed reaction mechanism consisting of 56 species and 351 reversible reactions. The simulation results including excess gas temperature, droplet velocities and corresponding fluctuations, droplet mean diameters and spray volume flux at different distances from the exit plane show good agreement with experimental data. Analysis of combustion spray features allows gaining a deep insight into the two-phase flow process ongoing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.