Abstract

The increase of the thrust/weight ratio of aircraft engines is extremely restricted by different 3-D flow loss mechanisms. One of them is the corner separation that can form at the junction between a blade suction side and a hub or shroud. In this paper, in order to further investigate the turbulent characteristics of corner separation, large-eddy simulation (LES) is conducted on a compressor cascade configuration using NACA65 blade profiles (chord based Reynolds number: 3.82 × 105), in comparison with the previous obtained experimental data. Using the shear-improved Smagorinsky model as subgrid-scale model, the LES gives a good description of the mean aerodynamics of the corner separation, especially for the blade surface static pressure coefficient and the total pressure losses. The turbulent dynamics is then analyzed in detail, in consideration of the turbulent structures, the one-point velocity spectra, and the turbulence anisotropy. Within the recirculation region, the energy appears to concentrate around the largest turbulent eddies, with fairly isotropic characteristics. Concerning the dynamics, an aperiodic shedding of hairpin vortices seems to induce an unsteadiness of the separation envelope.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.