Abstract
We provide a large deviation result for a random sum [Formula: see text], where Nx is a renewal counting process and {Xn}n≥0 are i.i.d. random variables, independent of Nx, with a common distribution that belongs to a class of square root insensitive distributions. Asymptotically, the tails of these distributions are heavier than e−√x and have zero relative decrease in intervals of length √x, hence square root insensitive. Using this result we derive the asymptotic characterization of the busy period distribution in the stable GI/G/1 queue with square root insensitive service times; this characterization further implies that the tail behavior of the busy period exhibits a functional change for distributions that are lighter than e−√x.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.