Abstract

The deformability of wrought magnesium alloys at room temperature is limited and a way to overcome this limit is to carry out forming operations in warm or hot conditions. In the case of fine grained alloys, superplastic properties can be generally achieved but in this regime, the Mg alloys are sensitive to strain induced cavitation. However, large grained alloys can also exhibit quite large deformabilities when they are deformed at high temperature. This can be due to the fact that on one hand, the Mg alloys may quite easily dynamically recrystallize and on the other hand, that dislocation movements may be controlled by a solute drag effect leading to significant strain rate sensitivity parameters. These various mechanisms of deformation will depend on the composition, the mean grain size and the conditions of deformation (i.e. temperature and strain rate). In this work, the high temperature deformation mechanisms as well as the associated damage mechanisms of two wrought magnesium alloys are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.