Abstract

A purely sequence-dependent approach to the modeling of protein-protein interaction was applied to the study of C-phycocyanin alphabeta dimers. The interacting pairs (alpha and beta subunits) share an almost complete structural homology, together with a general lack of sequence superposition; thus, they constitute a particularly relevant example for protein-protein interaction prediction. The present analysis is based on a description posited at an intermediate level between sequence and structure, that is, the hydrophobicity patterning along the chains. Based on the description of the sequence hydrophobicity patterns through a battery of nonlinear tools (recurrence quantification analysis and other sequence complexity descriptors), we were able to generate an explicit equation modeling alpha and beta monomers interaction; the model consisted of canonical correlation between the hydrophobicity autocorrelation structures of the interacting pairs. The general implications of this holistic approach to the modeling of protein-protein interactions, which considers the protein primary structures as a whole, are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.