Abstract
Abstract We report performance results achieved for fully functional sealed Large Area Picosecond Photodetectors (LAPPD™) in tests performed at Incom Inc., as well as independent test results reported by our early adopters. The LAPPD is a microchannel plate (MCP) based large area picosecond photodetector, capable of imaging with single-photon sensitivity at high spatial and temporal resolutions in a hermetic package. The LAPPD has an active area of 350 square centimeters in an all-glass hermetic package with a fused silica window and bottom plate and sidewalls made of borosilicate float glass. Signals are generated by a bi-alkali Na 2 KSb photocathode and amplified with a stacked chevron pair of MCPs produced by applying resistive and emissive atomic layer deposition coatings to glass capillary array (GCA) substrates. Signals are collected on RF stripline anodes applied to the bottom plates which exit the detector via pin-free hermetic seals under the side walls. LAPPD test and performance results for product produced and delivered to early adopter customers during the first half of 2018 are reviewed. These results include electron gains ≥ 7.5 × 106 @ 850/950 V (entry/exit MCP), low dark noise rates (22 Cts/s/cm2 ), single photoelectron (PE) timing resolution of 64 picoseconds RMS, and single photoelectron spatial resolution along and across strips of 2.8 mm and 1.3 mm RMS respectively. Many of these devices also had very high QE photocathodes that were uniform over the full 195 mm × 195 mm window active area (LAPPD #15 QE% @ 365 nm Max/Avg/Min = 25.8/22.3 ± 3/15.7). An update is also provided of developments that enable capacitive signal coupling from the detector to application specific pads or stripline readout patterns deployed on printed circuit boards positioned beneath the tile, outside of the vacuum package. We conclude with examples of how sensors offering picosecond timing, in diverse applications can bring transformative change to detector technology and applications in future experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.