Abstract

The emergence of semiconducting materials with inert or dangling bond-free surfaces has created opportunities to form van der Waals heterostructures without the constraints of traditional epitaxial growth. For example, layered two-dimensional (2D) semiconductors have been incorporated into heterostructure devices with gate-tunable electronic and optical functionalities. However, 2D materials present processing challenges that have prevented these heterostructures from being produced with sufficient scalability and/or homogeneity to enable their incorporation into large-area integrated circuits. Here, we extend the concept of van der Waals heterojunctions to semiconducting p-type single-walled carbon nanotube (s-SWCNT) and n-type amorphous indium gallium zinc oxide (a-IGZO) thin films that can be solution-processed or sputtered with high spatial uniformity at the wafer scale. The resulting large-area, low-voltage p-n heterojunctions exhibit antiambipolar transfer characteristics with high on/off ratios that are well-suited for electronic, optoelectronic, and telecommunication technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.