Abstract

The authors present highly selective emitters based on two-dimensional tantalum (Ta) photonic crystals, fabricated on 2 in. polycrystalline Ta substrates, for high-temperature applications, e.g., thermophotovoltaic energy conversion. In this study, a fabrication route facilitating large-area photonic crystal fabrication with high fabrication uniformity and accuracy, based on interference lithography and reactive ion etching is discussed. A deep reactive ion etch process for Ta was developed using an SF6/C4F8 based Bosch process, which enabled us to achieve ∼8.5 μm deep cavities with an aspect ratio of ∼8, with very steep and smooth sidewalls. The thermal emitters fabricated by this method show excellent spectral selectivity, enhancement of the emissivity below cut-off approaching unity, and a sharp cut-off between the high emissivity region and the low emissivity region, while maintaining the low intrinsic emissivity of bare Ta above the cut-off wavelength. The experimental results show excellent agreement with numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.