Abstract

Mutations in genes encoding proteins important in the function and metabolism of pulmonary surfactant are recognized causes of lung disease. Clinical genetic testing is available for these disorders, but children with phenotypes consistent with surfactant dysfunction and no identifiable mutations in the known causative genes have been reported. To identify the mechanism(s) for lung disease in two children with the phenotype of surfactant dysfunction who had negative testing in clinical laboratories for gene mutations causing surfactant dysfunction. Amplicons spanning multiple exons of candidate genes were generated by polymerase chain reaction and sequenced. A 4,335-base deletion that included all of exon 12 of the gene encoding member A3 of the adenosine triphosphate-binding cassette transporter was identified in a full-term infant with respiratory failure. A 333-base deletion involving part of exon 4 and the adjacent intron of the gene encoding surfactant protein C was identified in a child with interstitial lung disease. Large deletions are a cause of surfactant dysfunction disorders and may need to be sought for specifically in children whose phenotypes suggest these syndromes but in whom clinical genetic testing is unrevealing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.