Abstract

In this paper, we express the Laplacian polynomial of a graph in terms of the characteristic polynomials of its induced subgraphs. Further the Laplacian polynomial of a regular graph is expressed in terms of derivatives of its characteristic polynomial. In the sequel we obtain the Laplacian polynomial of a complement of a graph in terms of the characteristic polynomial of induced subgraphs of a graph. Using these we obtain the number of spanning trees of a graph.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.