Abstract

Abstract The paper investigates the truncation error between the Green function and the lattice Green function (LGF) for the Laplacian operator defined on the 2-torus and its discretization on a regular square lattice. Extensions to the cylinder and the rectangular domain with free (or Neumann) boundary conditions are also proposed. In each of these instances, the Green function and its discrete analog are given in exact analytical closed-form allowing to infer accurate estimates as the lattice spacing tends to zero. As expected, it is shown that the continuum limit of the LGF coincides well with the Green function in every case. In particular, the issue of logarithmic singularity regularization of the Green function by the lattice discretization is addressed through two related application examples regarding the rectangular domain, and devoted to the computation of corner-to-corner resistance of an electrical conducting square and the mean first-passage time between the diagonally opposite vertices of a square for a standard Brownian motion, both derived considering the continuum limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.