Abstract
The sensitive dependence on initial conditions (SDIC) associated with nonlinear models imposes limitations on the models’ predictive power. We draw attention to an additional limitation than has been underappreciated, namely, structural model error (SME). A model has SME if the model dynamics differ from the dynamics in the target system. If a nonlinear model has only the slightest SME, then its ability to generate decision-relevant predictions is compromised. Given a perfect model, we can take the effects of SDIC into account by substituting probabilistic predictions for point predictions. This route is foreclosed in the case of SME, which puts us in a worse epistemic situation than SDIC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.