Abstract

AbstractIn this study, cerium and lanthanum chloride binary mixtures conversion coatings were investigated as corrosion inhibitors for silicon carbide particulates reinforced AA5A06 aluminium composite and AA5A06 aluminium alloy. Electrochemical impedance spectroscopy and potentiodynamic polarization tests revealed that cerium (III) chloride additions markedly improved the pitting corrosion resistance as compared to lanthanum (III) chloride additions, with maximum increase noted for samples treated with 750 ppm cerium (III) + 250 ppm lanthanum (III) chlorides. Scanning electron microscopy, energy dispersion spectroscopy and X‐ray photoelectron spectroscopy examinations revealed the existence of a heterogeneous layer formed by precipitation of cerium/lanthanum oxide/hydroxide on the cathodic intermetallics and an aluminium oxide film on the rest of the metal matrix. Improved corrosion resistance was attained for SiC particulates reinforced aluminium composite by means of the cerium/lanthanum conversion treatment, due to the presence of mainly cerium (IV) species as a result of oxidation of cerium (III), which provides auto‐protection properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.