Abstract
AbstractThis article presents measurements by a cylindrical Langmuir probe in the plasma of a DC cylindrical magnetron discharge át the pressure 1.5 Pa that aim at the experimental assessment of the influence of a weak magnetic field to the estimation of the electron density when using conventional methods of probe data interpretation. The probe data was obtained under the presence of a weak magnetic field in the range 1.10−2−5.10−2 T. The influence of the magnetic field on the electron probe current is experimentally assessed for two cylindrical probes with different radii, 50 μm and 21 μm. This assessment is based on comparison of the values of the electron density estimated from the electron current part with the values of the positive ion density estimated from the positive ion current part of the probe characteristic respectively by assuming that at the magnetic field strengths used in the present study the probe positive ion currents are possible to be assumed as uninfluenced by the magnetic field. For interpretation of the probe positive ion current two theories are used and compared to each other: the radial motion model by Allen, Boyd and Reynolds [10] and Chen [11] and the model that accounts for the collisions of positive ions with neutrals in the probe space charge sheath that we call Chen‐Talbot model [8]. At lower magnetic field 3 · 10−2 T the positive ion density values interpreted by using the Chen‐Talbot model [8] are in better agreement with the values of electron density compared to those obtained by using the theory [10,11]; therefore the model [8] is used for calculation of the positive ion density from the probe data at higher magnetic fields. The comparison of the positive ion and electron density values calculated from the same probe data at higher magnetic fields shows that up to the magnetic field strength 4 . 10−2 T with the probe 100 μm and up to 5 . 10−2 T with the probe 42 μm in diameter respectively the decrease of the magnitude of the electron current at the space potential due to the magnetic field does not exceed the error limits that are usual for Langmuir probe measurements (absolute error ±20%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.