Abstract

The key to optimizing ecological management is to study the spatial configuration of the landscape and the dynamic changes and their driving mechanisms at the landscape scale. The ecological red line area in the hilly area of the upper reaches of the Ganjiang River was chosen as the research area in this study. Based on the theory of landscape ecology and the evolution of biological communities, a multiscale coupling model was adopted and combined with remote sensing (RS) and geographical information system (GIS) technologies to systematically study the evolution of key landscape ecosystems such as forests, patch characteristics, and changes in diversity. The study revealed that: (1) forests represented the largest proportion in the study area, followed by croplands and grasslands; (2) the biological community tended to progress toward climax between 1986 and 1995, but then it moved toward regressive successions between 1995 and 2005 before recovering; (3) the study area was characterized by a high proportion of dominant ecosystems, most of which were at their climax with stable ecological species groups, and which were connected by ecological corridors; and (4) during the period from 1995 to 2010, most landscapes showed a trend of fragmentation. However, during the period from 2010 to 2018, the forest patches were gradually connected. The proportion of dominant landscapes increased, and the landscape uniformity was reduced. Based on the findings, we proposed an ecosystem management strategy that includes strengthening crop management, focusing on the natural restoration of the ecosystems and the cultivation of large patches, exploring disturbances due to mining activities, and applying methods to mitigate damage to and optimize the ecosystem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call