Abstract
A mathematical description of cardiac anatomy is presented for use with finite element models of the electrical activation and mechanical function of the heart. The geometry of the heart is given in terms of prolate spheroidal coordinates defined at the nodes of a finite element mesh and interpolated within elements by a combination of linear Lagrange and cubic Hermite basis functions. Cardiac microstructure is assumed to have three axes of symmetry: one aligned with the muscle fiber orientation (the fiber axis); a second set orthogonal to the fiber direction and lying in the newly identified myocardial sheet plane (the sheet axis); and a third set orthogonal to the first two, in the sheet-normal direction. The geometry, fiber-axis direction, and sheet-axis direction of a dog heart are fitted with parameters defined at the nodes of the finite element mesh. The fiber and sheet orientation parameters are defined with respect to the ventricular geometry such that 1) they can be applied to any heart of known dimensions, and 2) they can be used for the same heart at various states of deformation, as is needed, for example, in continuum models of ventricular contraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.