Abstract

We develop a systematic information-theoretic framework for quantification and mitigation of error in probabilistic Lagrangian (i.e., path-based) predictions which are obtained from dynamical systems generated by uncertain (Eulerian) vector fields. This work is motivated by the desire to improve Lagrangian predictions in complex dynamical systems based either on analytically simplified or data-driven models. We derive a hierarchy of general information bounds on uncertainty in estimates of statistical observables $\mathbb{E}^{\nu}[f]$, evaluated on trajectories of the approximating dynamical system, relative to the "true'' observables $\mathbb{E}^{\mu}[f]$ in terms of certain $\varphi$-divergences, $\mathcal{D}_\varphi(\mu\|\nu)$, which quantify discrepancies between probability measures $\mu$ associated with the original dynamics and their approximations $\nu$. We then derive two distinct bounds on $\mathcal{D}_\varphi(\mu\|\nu)$ itself in terms of the Eulerian fields. This new framework provides a rigorous way for quantifying and mitigating uncertainty in Lagrangian predictions due to Eulerian model error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.