Abstract

Summary The paper proposes stochastic models for the analysis of ocean surface trajectories obtained from freely drifting satellite-tracked instruments. The time series models proposed are used to summarize large multivariate data sets and to infer important physical parameters of inertial oscillations and other ocean processes. Non-stationary time series methods are employed to account for the spatiotemporal variability of each trajectory. Because the data sets are large, we construct computationally efficient methods through the use of frequency domain modelling and estimation, with the data expressed as complex-valued time series. We detail how practical issues related to sampling and model misspecification may be addressed by using semiparametric techniques for time series, and we demonstrate the effectiveness of our stochastic models through application to both real world data and to numerical model output.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.