Abstract
We have performed new investigations applying our Lagrangian algorithm described by Alessandrini et al. (2013) to simulate the plume rise in a convective boundary layer capped by a strong inversion layer. We tested our model with the results of a water tank experiment (Weil et al., 2002). For each case, we compared the simulated and measured mean height, horizontal and vertical plume standard deviations and the entrapment (the fraction of the plume that remains captured above the temperature inversion layer located at the top of the boundary layer). The results show that the model is able to reproduce the main characteristics of the plume accurately.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environment and Pollution
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.