Abstract
A Lagrangian micro-mixing numerical model estimates the concentration statistics of reactive pollutants (NO, O3 and NO2) of a scalar mixing layer in decaying grid turbulence. A stochastic macro-mixing scheme computes the fluid particle trajectories, which describe the turbulent flow (Lagrangian turbulence), whereas the micro-mixing scheme interaction by the exchange with the conditional mean (IECM), implementing a new formulation for the mixing time, represents the dissipation of concentration turbulent fluctuations due to molecular diffusion. The non-homogeneous reaction-dominated limit (NHRDL) of the conserved scalar theory simulates chemical reactions. The numerical model integrates these three schemes and is validated by comparison with experimental and direct numerical simulation (DNS) data, whereas inter-comparisons with other numerical models are also reported. The study focuses on the reliability of Lagrangian stochastic models in representing micro-scale pollutant dispersion (air quality) and the importance of representing chemical reactions depending on instantaneous concentrations rather than their means.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environment and Pollution
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.