Abstract

A better understanding of water transport processes is highly desirable for the exploitation of the ocean resources and the protection of the ocean ecological system. In this paper, the Lagrangian methods are used to study the water transport processes in Xiangshan Bay in China, a typical semi-closed and narrow-shaped bay with complex coastline and topography. A high-resolution 3-D hydrodynamic model is developed and verified, and the results from the model agree well with the field data. Based on the hydrodynamic model, the Lagrangian residual current is computed by using the particle tracking method. A concept based on the dynamical systems theory, the Lagrangian coherent structures (LCSs), is introduced to uncover the underlying structures which act as the transport barriers in the flow. The finite-time Lyapunov exponent (FTLE) fields are computed from the hydrodynamic model results to extract the LCSs. The results indicate that the LCSs act as the internal structures of the Lagrangian residual current and the Lagrangian residual current displays the residual current speed and direction of different water regimes separated by the LCSs. The water masses with different transport characteristics can be identified and their exchange ability with other water masses can be estimated by combining the Lagrangian particle tracking with the LCSs methods. The comprehensive applications of these Lagrangian methods reveal the underlying structures and the inhomogeneous characteristics of the water transport in Xiangshan Bay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.