Abstract

In this paper, the problem of source localization in distributed multiple-input multiple-output (MIMO) radar using bistatic range measurements, which correspond to the sum of transmitter-to-target and target-to-receiver distances, is addressed. Our solution is based on the Lagrange programming neural network (LPNN), which is an analog neural computational technique for solving nonlinear constrained optimization problems according to the Lagrange multiplier theory. The local stability of the proposed positioning algorithm is also investigated. Furthermore, we have extended the LPNN based approach to more challenging scenarios, namely, when time synchronization among all antennas cannot be fulfilled, and there are position uncertainties in the MIMO radar transmit and receive elements. The optimality of the developed algorithms is demonstrated by comparing with the Cramer-Rao lower bound via computer simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.