Abstract

The influence of the intestinal microbiota, such as Lactobacillus, on the intestinal mucosa, particularly intestinal stem cells, remains incompletely understood. In this study, mice and intestinal organoids are used to explore the regulatory effect of Lactobacillus on the proliferation and differentiation of intestinal epithelial cells. This study demonstrates that S. typhimurium causes intestinal epithelial damage and affected growth of intestinal organoids. S. typhimurium also colonizes the intestine and then causes pathological changes to the intestinal epithelium, intestinal inflammation, and even death. However, L. acidophilus alleviates damage to intestinal organoids, increases the survival ratio of mice infected with S. typhimurium, and reduces tumor necrosis factor-α (TNF-α) secretion. Moreover, L. acidophilus affects the differentiation of epithelial cells through inhibition of the excessive expansion of goblet cells and Paneth cells induced by S. typhimurium to avoid over-exhaustion. Finally, it is also demonstrated that L. acidophilus ameliorates overactivation of Wnt/β-catenin pathway by Salmonella, depending on the contact with toll-like receptor 2 (TLR2), to affect the proliferation of the intestinal epithelium. This study demonstrates that L. acidophilus protects the intestinal mucosa against S. typhimurium infection through not only the inhibition of pathogen invasion but also determination of the fate of the intestinal epithelium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.