Abstract

The hypothesis was that probiotic Lactobacillus species (spp.) or their cell-free supernatant (CFS) are effective in inhibiting (a) planktonic growth of Pseudomonas aeruginosa (PA), (b) its adhesion to a Ti6Al4V-alloy surface, and (c) in dispersing biofilm once formed. (a) A planktonic co-culture containing PA(104 colony-forming unit [CFU]/ml) was combined with either Lactobacillus acidophilus, Lactobacillus plantarum (LP), or Lactobacillus fermentum (LF) at a suspension of 104 (1:1) or 108 CFU/ml (1:2). Lactobacillus and PA CFUs were then quantified. (b) Ti-6Al-4V discs were inoculated with PA followed by supplementation with CFS and adherent PA quantified. (c) Biofilm covered discs were supplemented with Lactobacillus CFS and remaining PA activity quantified. Results showed that whole-cell cultures were ineffective in preventing PA growth; however, the addition of CFS resulted in a 99.99 ± 0.003% reduction in adherent PA in all Lactobacillus groups (p < .05 in all groups) with no viable PA growth measured in the LF and LP groups. Following PA biofilm formation, CFS resulted in a significant reduction in PA activity in all Lactobacillus groups (p ≤ .05 in all groups) with a 29.75 ± 15.98% increase measured in control samples. Supplementation with CFS demonstrated antiadhesive, antibiofilm, and toxic properties to PA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.