Abstract

Salmonella Enteritidis (SE), Salmonella Typhimurium (ST), and Salmonella Heidelberg (SH) have been responsible for numerous outbreaks associated with the consumption of poultry meat and eggs. Salmonella colonization in chicken is characterized by initial attachment to the cecal epithelial cells (CEC) followed by dissemination to the liver, spleen, and oviduct. Since cecal colonization is critical to Salmonella transmission along the food chain continuum, reducing this intestinal association could potentially decrease poultry meat and egg contamination. Hence, this study investigated the efficacy of Lactobacillus delbreuckii sub species bulgaricus (NRRL B548; LD), Lactobacillus paracasei (DUP-13076; LP), and Lactobacillus rhamnosus (NRRL B442; LR) in reducing SE, ST, and SH colonization in CEC and survival in chicken macrophages. Additionally, their effect on expression of Salmonella virulence genes essential for cecal colonization and survival in macrophages was evaluated. All three probiotics significantly reduced Salmonella adhesion and invasion in CEC and survival in chicken macrophages (p < 0.05). Further, the probiotic treatment led to a significant reduction in Salmonella virulence gene expression (p < 0.05). Results of the study indicate that LD, LP, and LR could potentially be used to control SE, ST, and SH colonization in chicken. However, these observations warrant further in vivo validation.

Highlights

  • Salmonella enterica, a Gram-negative foodborne pathogen, is one of the leading causes of foodborne gastroenteritis in humans

  • In light of the need for effective alternatives to control Salmonella in chicken, our study investigated the probiotic potential of select lactic acid bacteria (LAB) to inhibit the attachment to and invasion of chicken primary cecal epithelial cells (CEC) by Salmonella Enteritidis (SE), Salmonella Typhimurium (ST), and S. Heidelberg (SH) in vitro

  • While there are several opportunities for transfer of Salmonella to poultry meat and eggs, cecal colonization in chickens is central to the direct transmission of the pathogen along the food chain continuum [25,26,27]

Read more

Summary

Introduction

Salmonella enterica, a Gram-negative foodborne pathogen, is one of the leading causes of foodborne gastroenteritis in humans. It is estimated that foodborne Salmonellosis accounts for 93.8 million cases and 155,000 deaths each year [1]. In the United States, the Centers for Disease Control and Prevention (CDC) estimates that Salmonella is responsible for 1 million illnesses, and 380 deaths annually [2]. Different Salmonella serovars have been implicated in these foodborne outbreaks, a limited number of them are responsible for most human infections [3,4]. In the US, during 2007–2011, five of the most common serovars caused 61% of all Salmonella-related outbreaks. Serovar Enteritidis was the most frequently isolated (27%) followed by Typhimurium (14%), Newport (10%), Heidelberg (7%), and Montevideo (3%) [5]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.