Abstract

Aims: Vascular smooth muscle cell (VSMC) ferroptosis is a pivotal event in the process of aortic dissection (AD), and a number of agents have a protective role against AD by inhibiting VSMC ferroptosis. While glycolysis is an ancient pathway related to almost all biological processes, its precise involvement in VSMC ferroptosis and AD remains unclear. Results: In this study, bioinformatics analysis revealed that glycolysis-related molecules and pathways were involved in VSMC ferroptosis and AD. We focused on the key enzyme of glycolysis, lactate dehydrogenase A (LDHA), and found that LDHA overexpression promoted ferroptosis and lipid peroxidation in cystine deprivation- or imidazole ketone erastin-treated VSMCs and vice versa. Clinical specimens showed a negative correlation between elevated LDHA levels in dissected aortae and ferroptosis-related molecules glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11), and ferroptosis suppressor protein 1 (FSP1). In VSMC ferroptosis, LDHA overexpression led to the suppression of GPX4, SLC7A11, and FSP1. Furthermore, the interaction between LDHA and nuclear factor (erythroid-derived 2)-like 2 (NRF2) was identified, and the overexpression or agonist of NRF2 reversed the contribution of LDHA on VSMC ferroptosis and lipid peroxidation. Innovation and Conclusion: These results highlight a significant association between LDHA and VSMC ferroptosis in AD development mediated through NRF2. These findings present LDHA as a potential target for AD intervention by inhibiting its expression. Antioxid. Redox Signal. 00, 000-000.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.