Abstract
This study investigates the enhancement of enzymatic catalytic performance by immobilizing laccase on various nanostructured mesoporous silica materials (SBA-15, MCF, and MSU-F). The activity of immobilized laccase was evaluated under different hydrothermal, pH, and solvent conditions, with laccase@MSU-F showing a three-fold increase in stability. Laccase immobilized on these materials demonstrated stability in a pH range of 4.5 to 10.0, while free laccase was inactivated at pH higher than 7. Molecular dynamics simulations revealed that electrostatic interactions and protective confinement effects contribute to the improved stability of immobilized laccase. Overall, the findings suggest that nanomaterials can enhance the operational stability and recovery of enzymes. Communicated by Ramaswamy H. Sarma
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.