Abstract
This paper presents a laboratory model of synchronous generator excitation system based on National Instruments cRIO real-time industrial controller. It was specially designed for development and verification of classical linear and modern nonlinear excitation control algorithms. Real-time Clarke and Park transformations were implemented on the FPGA for measurements of the generator load angle, voltages and currents in the generator dq-frame. Automatic voltage regulator (AVR) and power system stabilizer (PSS2A) were implemented and experimentally verified on an 83kVA synchronous generator. Tests of step changes for generator voltage and mechanical power references, and test of transmission line disconnection were conducted. Experimental results were compared to simulation results of the designed model in Matlab/Simulink.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.