Abstract
Recent papers attributing the observed microwave opacity of the middle atmosphere of Venus to gaseous sulfur dioxide (SO 2) and other cloud-related gases have motivated laboratory measurements of their microwave absorbing properties under simulated conditions for this region. In the pressure range from 1 to 5 atmospheres and in the temperature range from 297 to 355°K, the absorption of SO 2 in a carbon dioxide (CO 2) atmosphere, at 2.257 and 8.342 GHz, has been found to be approximately 50% larger than that calculated from Van Vleck-Weisskopf theory. The measured absorption is about 25 × 10 6 qƒ 2p 1.20 T −3.1 ( dB km −1) , where q is the sulfur dioxide number mixing ratio, ƒ is frequency in gigahertz, p is pressure in atmospheres, and T is temperature in degrees Kelvin. This represents the best-fit expression to the observed pressure dependence, while theoretical values of frequency and temperature dependence are accepted as being consistent with the measurements. Another cloud-related gas, sulfur trioxide (SO 3), was also tested in a CO 2 atmosphere and found to be relatively transparent. These results reduce the amount of SO 2 in the Venus middle atmosphere required to explain the opacity measured by radio occulatation, but this amount still exceeds the abundance measured in situ by atmospheric probes, suggesting that there must be another important source of opacity. Preliminary measurements of the 13-cm absorptivity of gaseous sulfuric acid (H 2SO 4) show it to be a strong microwave absorber, and thus likely to be responsible for a significant and possibly major part of the observed opacity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.