Abstract
Both styrene–butadiene-styrene copolymer (SBS) and epoxy resin have been widely applied in the asphalt modification. The influence of SBS concentration on the morphology, viscosity, thermal stability, glass transition temperature (Tg), damping performance and mechanical behaviors of the neat EA binder was studied. Double phase separation occurred in the epoxy SBS modified asphalt (ESBA): main phase separation between epoxy and the SBS modified asphalt (SBA) and secondary phase separation between asphalt and SBS. The occurrence of phase separation in the ESBA disrupted the original dispersion of SBS particles in SBA and resulted in the redistribution of SBS in the form of smaller spherical particles. The inclusion of SBS increased the viscosity of the neat EA. Furthermore, the viscosity of ESBAs increased with the SBS content. ESBAs had as long as 150-min construction time for the mixture pavement. The presence of SBS improved the thermostability of the neat EA. In terms of ESBAs, the thermostability increased with the SBS content. The addition of SBS lowered the Tg of the neat EA when the SBS content was lower than 4 wt%. The Tg of ESBAs increased with the SBS content. The incorporation of SBS significantly enhanced the damping behaviors of the neat EA. The tensile strength of the neat EA was improved with the addition of 2 wt% SBS. The inclusion of SBS improved the elongation at break and the toughness of the neat EA when the SBS loading was greater than 1 wt%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.