Abstract
In network edge computing scenarios, close monitoring of network data and anomaly detection is critical for Internet services. Although a variety of anomaly detectors have been proposed by many scholars, few of these take into account the anomalies of the data in business logic. Expert labeling of business logic exceptions is also very important for detection. Most exception detection algorithms focus on problems, such as numerical exceptions, missed exceptions and false exceptions, but they ignore the existence of business logic exceptions, which brings a whole new challenge to exception detection. Moreover, anomaly detection in the context of big data is limited to the need to manually adjust detector parameters and thresholds, which is constrained by the physiological limits of operators. In this paper, a neural network algorithm based on the combination of Labeling Neural Network and Relevant Long Short-Term Memory Neural Network is proposed. This is a semi-supervised exception detection algorithm that can be readily extended with business logic exception types. The self-learning performance of this multi-network is better adapted to the big data anomaly detection scenario, which further improves the efficiency and accuracy of network data anomaly detection and considers business scenario-based anomaly data detection. The results show that the algorithm achieves 96% detection accuracy and 97% recall rate, which are consistent with the business logic anomaly fragments marked by experts. Both theoretical analysis and simulation experiments verify its effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.