Abstract

BackgroundOrthodontically-induced root resorption is an iatrogenic effect and it cannot be examined regularly due to the harmful effects of sequential doses of radiation with more frequent radiography. This study aims to compare protein abundance (PA) of pre-treatment and during orthodontic treatment for root resorption and to determine potential early markers for root resorption.MethodsTen subjects (n = 10) who had upper and lower fixed appliances (MBT, 3 M Unitek, 0.022″ × 0.028″) were recruited for this study. Human gingival crevicular fluid (GCF) was obtained using periopaper strips at pre-treatment (T0), 1 month (T1), 3 months (T3), and 6 months (T6) of orthodontic treatment. Periapical radiographs of the upper permanent central incisors were taken at T0 and T6 to measure the amount of root resorption. Identification of changes in PA was performed using liquid chromatography-tandem mass spectrometry. Student’s t-test was then performed to determine the significance of the differences in protein abundance before and after orthodontic treatment.ResultsOur findings showed that all ten subjects had mild root resorption, with an average resorption length of 0.56 ± 0.30 mm. A total of 186 proteins were found to be commonly present at T0, T1, T3, and T6. There were significant changes in the abundance of 16 proteins (student’s t-test, p ≤ 0.05). The increased PA of S100A9, immunoglobulin J chain, heat shock protein 1A, immunoglobulin heavy variable 4–34 and vitronectin at T1 suggested a response to stress that involved inflammation during the early phase of orthodontic treatment. On the other hand, the increased PA of thymidine phosphorylase at T3 suggested growth promotion and, angiogenic and chemotactic activities.ConclusionsThe identified proteins can be potential early markers for root resorption based on the increase in their respective PA and predicted roles during the early phase of orthodontic treatment. Non-invasive detection of root resorption using protein markers as early as possible is extremely important as it can aid orthodontists in successful orthodontic treatment.

Highlights

  • Orthodontically-induced root resorption is an iatrogenic effect and it cannot be examined regularly due to the harmful effects of sequential doses of radiation with more frequent radiography

  • Our study aims to compare the protein abundance (PA) of Gingival crevicular fluid (GCF) at pretreatment (T0), after 1 month (T1), 3 months (T3), and 6 months (T6) of orthodontic treatment

  • A total of 815 proteins were identified by Liquid chromatography (LC)-Liquid chromatography-tandem mass spectrometry (MS) in human GCF

Read more

Summary

Introduction

Orthodontically-induced root resorption is an iatrogenic effect and it cannot be examined regularly due to the harmful effects of sequential doses of radiation with more frequent radiography. This study aims to compare protein abundance (PA) of pre-treatment and during orthodontic treatment for root resorption and to determine potential early markers for root resorption. Orthodontic treatment has iatrogenic effects that can be detrimental to the stability of teeth and shorten their roots. Root resorption occurs when the root is shortened, which often results in tooth extraction (in severe cases) [1]. Orthodontic treatment applies a mechanical force [2] that is capable of creating external root resorption in the patients, shortening the roots [3, 4]. GCF contains proteins involved in oral pathologic phenomenon, such as internal root resorption [8, 9], as well as a diverse population of cells, desquamated epithelial cells, organic ions, inorganic ions, enzymes, and bacteria from adjacent plaque. We believe that GCF is a reliable source for root resorption biomarkers

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.