Abstract
We design a label-free optical platform for SNP detection by using aggregation-induced emission (AIE) active molecule DSAI as the probe and water-soluble carbon nanotubes as the selective platform via the fluorescent quenching effect. In the presence of DNA, DSAI molecules aggregate on DNA through the intercalation and the electrostatic interaction as well as the hydrophobic interaction, resulting in the strong fluorescence in the solution. In order to distinguish the wild-DNA from the single nucleotide mutated-DNA, we induce the water-soluble carbon nanotubes as the effective fluorescent quenching material. The interactions between DSAI and wild-DNA are rather strong, thus DSAI molecules cannot be hauled out from wild-DNA and the fluorescence stays still. While the interactions between DSAI and single nucleotide mutated-DNA are relatively weak, and several DSAI molecules can be hauled out from the single nucleotide mutated-DNA by the water-soluble carbon nanotubes through the strong electrostatic interaction, leading to the partial fluorescent quenching in the solution. Therefore, the detection of SNP in the random DNA sequence could be realized by using AIE probes and carbon nanotubes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.