Abstract

We present a CMOS-compatible double gate and label-free C-reactive protein (CRP) sensor, based on silicon on insulator (SOI) silicon nanowires arrays. We exploit a reference subtracted detection method and a super-Nernstian internal amplification given by the double gate structure. We overcome the Debye screening of charged CRP proteins in solutions using antibodies fragments as capturing probes, reducing the overall thickness of the capture layer. We demonstrate the internal amplification through the pH response of the sensor, in static and real-time working modes. While operated in back-gate configuration, the sensor shows excellent stability (< 20 pA/min in the worst case), low hysteresis (< 300 mV), and a great sensitivity up to 1.2 nA/dec toward CRP proteins in the linear response range. The reported system is an excellent candidate for the continuous monitoring of inflammation biomarkers in serum or interstitial fluid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.