Abstract

A label-free and efficient electrochemical biosensor was developed for the ultrasensitive detection of EBV-related DNA by combing AgDNCs@DNA/AgNCs nanocomposites with noncanonical lambda exonuclease (λ exo)-assisted target recycling (LNTR). The conjugates of AgDNCs, DNA/AgNCs and probe DNA (pDNA-AgDNCs@DNA/AgNCs conjugates) worked as not only ideal nanocarriers but also efficient electrochemical tags. LNTR didn't require phosphorylated substrates and could be triggered specifically by target DNA, leading to the recycling use of target DNA and the liberation of plentiful linker probes (LP). Subsequently, the LP hybridized with the capture probes on the electrode and then bond to pDNA-AgDNCs@DNA/AgNCs conjugates, generating a sensitive electric signal directly. What's more, the signal amplification effects of DNA/AgNCs and LNTR were investigated. Under the optimal conditions, the proposed method exhibited a wide linear range of 1 fM to 1 nM and the detection limit down to 0.38 fM. In addition, the developed biosensing method exhibited excellent specificity and was successfully applied to detect target DNA in complex biological matrix. The proposed biosensor without extra bio-labels may provide a promising platform in bioanalysis and biochemical research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.