Abstract

A double-stage Lab-In-Syringe automated extraction procedure coupled online to HPLC for the determination of four sulfonamides in urine has been developed. Our method is based on homogeneous liquid-liquid extraction at pH 3 using water-miscible acetonitrile with induction of phase separation by the addition of a saturated solution of kosmotropic salts MgSO4 and NaCl. The procedure allowed extraction of the moderately polar model analytes and the use of a solvent that is compatible with the used separation technique. The automated sample preparation system based on the stirring-assisted Lab-In-Syringe approach was coupled on-line with HPLC-UV for the subsequent separation of the sulfonamide antibiotics. To improve both preconcentration factor and extract cleanup, the analytes were trapped at pH 10 in an anion-exchange resin cartridge integrated into the HPLC injection loop thus achieving a double-stage sample clean-up. Analytes were eluted using an acidic HPLC mobile phase in gradient elution mode. Running the analytes separation and the two-step preparation of the following sample in parallel reduced the total time of analysis to mere 13.5 min. Limits of detection ranged from 5.0 to 7.5 μg/L with linear working ranges of 50–5000 μg/L (r2 > 0.9997) and RSD ≤ 5% (n = 6) at a concentration level of 50 μg/L. Average recovery values were 102.7 ± 7.4% after spiking of urine with sulfonamides at concentrations of 2.5 and 5 mg/L followed by 5 times dilution. To the best of our knowledge, the use of Lab-In-Syringe for the automation of coupled homogeneous liquid-liquid extraction and SPE for preparation of the complex matrices suitable for separation techniques is here presented for the first time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.