Abstract
AbstractTopotactic phase transitions induced by changes in the oxygen vacancy concentration can largely alter the physical properties of complex oxides, including electronic and magnetic phases, while maintaining the structural integrity of the crystal lattice. An oxygen‐vacancy‐induced topotactic phase transition from perovskite (PV) to brownmillerite (BM) is achieved in epitaxial La0.6Sr0.4CoO3−δ (LSCO) thin films. Two novel intermediate states with different oxygen content are identified by X‐ray diffraction, which involves a single‐phase reduced PV state and a mixed state of co‐existing PV and BM. The combination of depth‐sensitive polarized neutron reflectometry (PNR) and Rutherford backscattering (RBS) allows a quantitative determination of magnetization and the mean oxygen content in all states, revealing a continuous transition from La0.6Sr0.4CoO2.97 to La0.6Sr0.4CoO2.5. BM formation is observed for an LSCO layer with an oxygen content of 2.67, while the magnetic and electronic transition already occurs for a layer with a higher oxygen content of 2.77 (and above) and in the absence of a BM signature. These results demonstrate that the physics of electronic metal‐to‐insulator transition (MIT), magnetic ferromagnet‐to‐non‐ferromagnet transition (FM‐to‐non‐FM), and structural PV‐to‐BM phase transition should be considered within the framework of separate but interrelated processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.