Abstract

We report the results of LA-ICP-MS analyses of rock forming minerals in clinopyroxene-apatite-K feldspar-phlogopite (CAKP) metasomatic xenoliths and primary carbonatite melt inclusions (CMI) hosted in apatite (Ap) and K feldspar (Kfs). The xenoliths are from the Cretaceous lamprophyre dikes of the Transdanubian Central Range, Hungary. The CMI in Ap have phosphorus dolomitic composition as opposed to CMI in Kfs, which display dolomitic alkali-aluminosiliceous character. The melts found in CMI in Ap and in Kfs likely formed by liquid–liquid separation from an originally carbonate- and phosphorous-rich melt. Primitive mantle (PM) normalized trace element distributions of both Ap- and Kfs-hosted CMI ( n = 60 and 20, respectively) reveal a strong negative Ti-anomaly, and an extreme enrichment in incompatible elements (U, Th, LILE and LREE) relative to HREE, Sc, V, Ni and Cr. Rarely, apatites contain unique CMI, which show major- and trace-element signature transitional to K feldspar-hosted CMI. This is due to heterogeneous entrapment of an immiscible phosphorous-bearing carbonatite melt and a carbonate-bearing alkali aluminosiliceous melt, which is a further evidence for their co-existence. CMI reveal that U, Th, Pb, Nb, Ta, P, Sr, Y and REE partitioned into the phosphorous-bearing carbonatite melt, whereas Cs, Rb, Na, K, B, Al, Zr and Hf preferred the silicate-bearing liquid. PM normalized REE pattern (high LREE/HREE), elevated Zr and Hf contents and negative Ti anomaly of clinopyroxene (Cpx) indicate that its formation is genetically linked to carbonatite metasomatism attested by CMI. Trace element partitioning between the studied Cpx and CMI is in accordance with experimentally determined trace element distributions between Cpx and carbonatite melt. Cpx, which occur in samples with high modal proportion of apatite represent mantle section, which interacted with a higher amount of “initial” carbonatite melt than Cpx from apatite-poor xenoliths. This is confirmed by higher Cr, Ni, V, Sc, Ti and lower Zr, as well as Hf concentration in Cpx from xenoliths with low modal abundance of Ap. CMI reveal that Ti, V, Ni and Cr were in lower concentration in the “initial” carbonatite melt than in PM. Contrarily, Zr and Hf were more abundant in this melt than in PM. Consequently, a continuously migrating “initial” carbonatite melt, increased Zr and Hf concentration, and decreased Ti, Sc, V, Ni and especially Cr in the clinopyroxenes. Our findings suggest that the studied CAKP rocks were formed by carbonatite melt metasomatism, which occurred in an open system in the upper mantle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.