Abstract

Pure L-threonine dehydrogenase from Escherichia coli is a tetrameric protein (Mr = 148,000) with 6 half-cystine residues/subunit; its catalytic activity as isolated is stimulated 5-10-fold by added Mn2+ or Cd2+. The peptide containing the 1 cysteine/subunit which reacts selectively with iodoacetate, causing complete loss of enzymatic activity, has been isolated and sequenced; this cysteine residue occupies position 38. Neutron activation and atomic absorption analyses of threonine dehydrogenase as isolated in homogeneous form now show that it contains 1 mol of Zn2+/mol of enzyme subunit. Removal of the Zn2+ with 1,10-phenanthroline demonstrates a good correlation between the remaining enzymatic activity and the zinc content. Complete removal of the Zn2+ yields an unstable protein, but the native metal ion can be exchanged by either 65Zn2+, Co2+, or Cd2+ with no change in specific catalytic activity. Mn2+ added to and incubated with the native enzyme, the 65Zn2(+)-, the Co2(+)-, or the Cd2(+)- substituted form of the enzyme stimulates dehydrogenase activity to the same extent. These studies along with previously observed structural homologies further establish threonine dehydrogenase of E. coli as a member of the zinc-containing long chain alcohol/polyol dehydrogenases; it is unique among these enzymes in that its activity is stimulated by Mn2+ or Cd2+.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.