Abstract

ABSTRACTThe power threshold for low (L) to high (H) confinement mode transition achieved by radio-frequency heating and molybdenum first wall with lithium coating has been experimentally investigated on the EAST tokamak for two sets of divertor geometries and materials: tungsten/carbon divertor and full carbon divertor. For both sets of divertors, the power threshold was found to decrease with gradual accumulation of the lithium wall coating, suggesting the important role played by the low Z impurities and/or the edge neutral density on the L–H power threshold. When operating in the upper single null configuration, with the ion grad-B drift direction away from the primary X-point, a lower normalized power threshold is observed in EAST with the tungsten/carbon divertor, compared to the carbon divertor after intensive lithium wall coating. A newly installed cryopump increasing the pumping efficiency also plays an important part in the observed lower threshold. In addition, the H-mode in the Quasi-Snowflake divertor configuration has been obtained on EAST, exhibiting higher L–H power threshold compared to the lower single null configuration with similar IP/BT pairs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.