Abstract

Brief introductionMyocardial infarction (MI) is a common manifestation of certain cardiac diseases where oxidative stress and fibrosis aggravate the condition markedly. Main objective of the studyInvestigation of L-carnitine’s cardioprotective roles and mechanism of action in a rat model of MI. MethodsTo develop a MI animal model, Isoproterenol (ISO) was administered in male Long Evans rats where animals were divided into five groups (six rats/group). The oxidative stress and antioxidant enzyme activities were determined by different biochemical tests. The real-time PCR was performed to determine the expression of TNF-α and Il-1β. Histopathological observations by hematoxylin-eosin and Masson trichrome were made to observe the tissue damage and fibrosis in heart and kidney. Significant findings from the studyThe ISO-treated rats showed increased levels of troponin I and lipid peroxidation and lower antioxidant enzyme activity in heart and kidney tissues. The levels of TNF-α and IL-1β were also increased in ISO-rats. Co-administration of L-carnitine with ISO reversed all these parameters. The elevated levels of uric acid and creatinine kinase and ALP, AST and ALT activities in ISO-rats were also significantly reduced by L-carnitine administration. L-carnitine markedly decreased the infiltration of inflammatory cells and improved the tissue architecture in heart and kidney. Control animals did not show any appreciable response upon L-carnitine administration. Relevant contribution to knowledgeThese results suggest that L-carnitine plays a defensive role against cardiac and renal damage in ISO-treated MI rat model via suppressing oxidative stress and increasing antioxidant enzyme functions through inhibition of TNF-α and IL-1β.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.