Abstract
Several endogenous peptides for G-protein-coupled receptors have been found to play physiological roles in muscle contraction in addition to their well-demonstrated actions in other tissues. To further identify such peptides, we screened over 400 peptides using an isometric tension assay of rat papillary muscle. Here, we report that kyotorphin, which is known as an analgesic dipeptide, has a cardiac effect. Although kyotorphin had no effect on the twitch tension itself, it inhibited β-adrenergic agonist isoprenaline-induced increases in twitch tension in a dose-dependent manner. Leu-Arg, a selective antagonist of kyotorphin, reversed this inhibitory effect. The inhibitory effect was also reversed by naloxone, an opioid receptor antagonist. These results suggest that kyotorphin may release opioid peptides from rat cardiac muscle and have an indirect regulatory role in β-adrenergic action through cross-talk with opioid receptors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.