Abstract

The constructive form of the Kuryshkin-Wodkiewicz model of quantum measurements was earlier developed in detail for the quantum Kepler problem. For more complex quantum objects, such a construction is unknown. At the same time, the standard (non-constructive) model of Holevo-Helstrom quantum measurements is suitable for any quantum object. In this work, the constructive model of quantum measurements is generalized to a wider class of quantum objects, i.e., the optical spectrum of atoms and ions with one valence electron. The analysis is based on experimental data on the energy ordering of electrons in an atom according to the Klechkovsky-Madelung rule and on the substantiation of a single-particle potential model for describing the energy spectrum of optical electrons in alkali metal atoms. A representation of the perturbation of a single-particle potential in the form of a convolution of the potential of an electron in a hydrogen atom with the Wigner function of a certain effective state of the core in an alkali metal atom representation allows reducing all calculation algorithms for alkali metals to the corresponding algorithms for the hydrogen atom.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.