Abstract

The general approach to spatial normalization using a deformation field is presented. Current high degree-of-freedom deformation methods are extremely time-consuming (10–40 hr), and a k-tree method is proposed to greatly reduce this time. A general k-tree method for analysis of source and target images and synthesis of deformation fields is described. The k-tree method simplifies scale control and feature extraction and matching, making it highly efficient. A two-dimensional (2-D), or quadtree, application program was developed for preliminary testing. The k-tree method was evaluated with 2-D images to test rotating ability, nonhomologous region matching, inner and outer brain-structure independence, and feasibility with human brain images. The results of these tests indicate that a three-dimensional (3-D), or octree, method is feasible. Preliminary work with an octree application program indicates that a processing time of under 10 min for 2563 image arrays is attainable on a Sun Ultra30 workstation. Hum. Brain Mapping 6:358–363, 1998. © 1998 Wiley-Liss, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.