Abstract

The wing loading parameter depending on the wing area and weight and the aspect ratio parameter, which is the wing shape factor, are the main parameters that determine the fixed-wing flight mechanics. In this study, the relationship between wing forms and flight style of 195 bird species was evaluated using wing area and mass scatter plot. The slope of the mass and wing area chart is proportional to the 1/wing loading. The results showed that birds with more wing area per unit mass tended to perform unpowered flight styles such as soaring and gliding; and birds with less wing area per unit mass tended to have powered flight styles, such as flapping and hovering. In general, it has been found that the slope of the trendline curve is more inclined tended to expend more energy in flight. Unlike the fixed-wing flight mechanics, hand-wings and arm-wings should also be examined to understand the flight mechanics of flapping wings as different effects occur during flapping flight in terms of the lift and thrust forces. In addition, scythe-shaped wings differ from high-speed wings in terms of the ratio of hand wing length/arm wing length according to their wing structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.