Abstract

Epileptic seizures are dangerous. They render patients unconscious and can lead to death within seconds of onset. There is, therefore, the need for a very fast and accurate seizure detection mechanism. Kriging methods have been used extensively in geostatistics for spatial prediction and are known for very high accuracy. By modeling the brain as a spatial map, we demonstrate the effectiveness of Kriging Methods for efficient seizure detection in an edge computing paradigm. We explore three different types of Kriging - Simple Kriging, Ordinary Kriging and Universal Kriging. Results from various experiments with electroencephalogram (EEG) signals of both healthy and diseased patients show that all three Kriging methods have good performance in terms of accuracy, sensitivity and detection latency. However, Simple Kriging emerged as the slight favorite for seizure detection with a mean detection latency of 0.81 sec, an accuracy of 97.50%, a sensitivity of 94.74% and a perfect specificity. Simple Kriging is at least 5% better than Ordinary Kriging and Universal Kriging when evaluated at 68.2% confidence interval. The results obtained in this paper compare favorably with other seizure detection models in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.